If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-20x^2-21x-4=0
a = -20; b = -21; c = -4;
Δ = b2-4ac
Δ = -212-4·(-20)·(-4)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-11}{2*-20}=\frac{10}{-40} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+11}{2*-20}=\frac{32}{-40} =-4/5 $
| 3x–6|=6 | | 223=24-u | | 2X-3x-18=18+2X+5x | | 6(n-8)+5n=-103 | | -5/2y=45 | | 3/5b=79.50 | | V^2=-4v+32 | | 1-7n=11-5n | | 12x-54x=91 | | 9(-3+x)=210 | | -2(-2-5x)+1=85 | | 2(4x-3)+12=5x-15 | | 3/5(79.50)=b | | -2(7-7x)=-84 | | 2(x−2)=2 | | 2(x−2)=2(x−2)= −2−2 | | 2-2(x+3)=2(x+4) | | -3(-8-7n)=108 | | W+4+2w=67 | | |2x-4|=-15 | | 3^(7+4x)=2x | | 3/4+50=m | | 2-2(x+3)=2(x=4) | | 1/5(5-10g)=15 | | 11+26x=9+30x | | 2+2c=20 | | 8r+18=-6(5r-3) | | (3x+5)(5x+15)=180 | | x=55=29 | | 17=k/12 | | 3/4(x-12)=x | | x(55=29 |